
 API Security in India’s Digital Landscape | 1

 API Security in India’s Digital Landscape | 3

I. Executive Summary ...4

II. Purpose and Scope of the Report ...6

1. Introduction .. 7

 1.1 The Rise of APIs in India’s Digital Transformation ... 7
 1.2. Anatomy of an API ... 7
 1.3 Relevance of API Security amid Rapid Technological Advancements ...9

2. The Indian API Ecosystem .. 10

 2.1 Evolution of the API Economy in India ... 10
 2.2 Role of Digital Initiatives and Government Platforms ... 11
 2.3 Overview of Digital India and API-Driven Innovation ...12

3. Threat Landscape and Challenges ...13

 3.1 Common API Vulnerabilities and OWASP API Top 10 ...13
 3.2 Case Studies of Security Incidents within Indian Organizations ...16
	 3.3		 Regional	and	Sector-Specific	Challenges ..16

4. Regulatory and Compliance Framework ...19

5. Best Practices in API Security ...21

 5.1 Secure API Design and Development Lifecycle ..21
 5.2 Authentication and Authorization Protocols ...23
 5.3 API Gateway Strategies, Encryption, and Real-Time Monitoring ...26
 5.4 API Threat Intelligence and Threat Modeling ..29
 5.5 Security Testing, Auditing, and Continuous Improvement .. 30
 5.6 Incident Response and Risk Management Tailored for Indian Enterprises 30
 5.7 API Threat Intelligence and Threat Modeling ...31
 5.8 Compliance Mapping and Regulatory Considerations ..31

6. API Setu: An Indian Case Study ..32

 6.1 Background and Objectives of API Setu as a National Initiative ..32
 6.2 Architecture, Security Protocols, and Integration Approaches ... 34
 6.3 Lessons Learned and Best Practices Derived from API Setu ..35
 6.4 How API Setu Serves as a Benchmark for Broader API Security Implementations35

7. Security Testing, Auditing, and Continuous Improvement ..37

 7.1 Methods for Penetration Testing and Vulnerability Assessments ...37
 7.2 Continuous Monitoring Strategies in the Indian IT Environment .. 38
 7.3 Incident Response and Risk Management Tailored for Indian Enterprises 38

8. Advanced Topics and Emerging Trends ..40

 8.1 Leveraging AI/ML for Proactive Threat Detection in API Ecosystems ..40

 8.2 Cloud-Native and Microservices Architectures in the Indian Market ..41

 8.3 Future Challenges and Opportunities, Including Quantum Computing Impacts 42

9. Conclusion .. 43

10. Abbreviations ... 45

11. Glossary of Terms ... 46

12. References .. 48

Table of
CONTENTS

4 | API Security in India’s Digital Landscape

Key observations:

• API Security as a National Imperative:
India’s digital economy, spanning
finance	(Unified	Payments	Interface,	net	
banking),	 governance	 (Aadhaar	 eKYC,	
DigiLocker), and beyond, depends on
secure APIs. Even a single API breach
can cause systemic issues, undermine
public trust, and violate compliance
mandates.

• Unified Regulatory Push: The Digital
Personal	 Data	 Protection	 Act	 (DPDP)	
and related cybersecurity frameworks
are driving organizations to strengthen
API defenses. Noncompliance leads
to reputational harm and potential
penalties.

• Designing for Security: A shift from
“bolting on” security at the end of
development to integrating security
from the earliest design stages has
become essential. Techniques like
OAuth	 2.0,	 JSON	 Web	 Tokens	 (JWT),	
and robust encryption are becoming
standard practice for consumer-facing
APIs.

Executive Summary

As India’s digital ecosystem
grows, Application Programming
Interfaces (APIs) have become the
fundamental enabler of interactions
between government portals, online
payment platforms, and numerous
private services. Innovative
capabilities such as seamless
banking, real-time health record
integration, and rapid application
development are all achieved via
these APIs while operating behind
the scenes. As APIs have enhanced/
improved connectivity , they have
also expanded the cyber threat
landscape for organizations, . As a
result, organizations across India’s
public and private sectors, are now
more concerned about securing
these API endpoints to ensure
the integrity of their services,
compliance with regulations, and
safeguarding public trust.

 API Security in India’s Digital Landscape | 5

• Proactive Monitoring and Audits: The
unpredictable nature of cyber threats
means continuous scanning, real-
time anomaly detection, and periodic
penetration tests are crucial, rather than
one-time checklists.

• Case Study Inspiration: Initiatives like
API Setu show that when governance
is well-organized, protocols are clear,
and oversight is properly managed, it
creates an environment where APIs can
be widely adopted without risking data
privacy or integrity.

Significance of API Security for
India’s Digital Ecosystem

With hundreds of millions of connected
citizens, India is now among the largest
digital markets in the world. The “Digital
India” initiative has led to the large-scale
introduction of a lot of products and
services. This includes Aadhaar-based ID

checks, real-time payments, and more. The
unseen APIs connect these services and
offer	 various	 services	 such	 as	 payments	
without any delay. As India moves towards
becoming a data-driven economy, the
likelihood of large-scale cyberattacks is
increasing.

Weakness	in	APIs	or	improper	configurations	
can lead to leakage of citizens’ data,
disruption	 of	 financial	 transactions	 and	
damage trust in e-governance.

As the focus shifts from technology to
users,	 we	 realize	 that	 APIs	 offer	 far	 more	
than just network security. By appreciating
the complexities of API threat environment,
aligning with compliance frameworks, and
integrating security best practices, Indian
organizations can use full potential of digital
transformation without exposing citizens
and enterprises to undue risk.

6 | API Security in India’s Digital Landscape

1. Analyzing Threats: Exploring	 vulnerabilities	 specific	 to	APIs,	with	 a	 special	 focus	 on	
India’s unique digital environment.

2. Highlighting Best Practices: Outlining industry-leading technical recommendations for
secure API design, testing, and continuous monitoring—particularly relevant to Indian
conditions.

3. Reviewing Regulatory Requirements: Clarifying the legal landscape involving data
protection and cyber laws in India, including the DPDP Act, IT Act, RBI guidelines, and
more.

4. Showcasing a National Model: Providing an in-depth case study of API Setu to illustrate
how	large-scale	public	API	frameworks	can	implement	strong	security	without	stifling	
innovation.

5. Projecting Future Trends: Investigating emerging issues such as post-quantum
cryptography, AI-based threat detection, and microservices security complexities.

Purpose and
Scope of the Report
This report dives into the multifaceted challenge of securing APIs in India. Its
goals include:

This comprehensive viewpoint is designed to serve a diverse audience—policy makers
shaping	regulations,	CISOs	looking	to	refine	organizational	API	security	policies,	developers	
charged	with	building	secure	interfaces,	and	business	leaders	who	must	weigh	the	tradeoffs	
between rapid innovation and risk management.

6 | API Security in India’s Digital Landscape

 API Security in India’s Digital Landscape | 7

Introduction
1.1 The Rise of APIs in India’s Digital Transformation

APIs make it possible for software systems to exchange
information	 with	 each	 other	 without	 difficulty.	 In	 India	
their relevance has gone up massively because of major
government digitization programs like Digital India,
Aadhaar	 and	 UPI.	 Indian	 organizations,	 both	 public	 and	
private, are adopting open/some open APIs to enable
interoperability and unleash new innovations rather than
building	closed	setups.	A	classic	example	is	UPI	ecosystem,	
where banks expose standard APIs for fund transfers and
fintech	startups	plug	into	these	APIs	for	easy	user	payment	
experience.

The older monolithic applications did not expect
integrations with external systems, whereas the API-
first	approach	 is	exactly	opposite.	 India’s	 tech	sector	can	
launch niche services faster using microservices. The BFSI
(banking,	financial	services	and	insurance)	space	is	not	the	
only one to see this trend. Healthcare, e-commerce, telecom
and even agri-tech solutions are in on it, as well. The ease
of integration and scale has been a boon for India’s startup
ecosystem fuelling competition and accelerating user
adoption of digital services.

1.2 Anatomy of an API

APIs enable software applications to communicate
and share data. An API can be thought of as a contract
that dictates how a client can engage with the server. It
has a request component and a response component.

 In India their
relevance has

gone up massively
because of major

government
digitization

programs like
Digital India,

Aadhaar and UPI.

01

8 | API Security in India’s Digital Landscape

They facilitate most of our modern digital
experiences as they follow a simple request-
response cycle.

Let’s break down how this works through
a relatable example — a food delivery app.

Imagine you’re using a food delivery app to
order your favorite meal. When you browse
menus,	make	 selections,	 and	 confirm	 your	
order, the app is using APIs to:

All of these interactions involve making API
requests, processing them on the server,
and returning the results to you — all in a
matter of seconds.

1. API Client – Placing the Order

The API client is the starting point. In our
example, this is the food delivery app on
your smartphone. When you browse menus,
add items to your cart, or place an order,
the app is making multiple API requests to
interact with various services.

2. API Request – Making the Request

When you place an order, the food delivery
app sends an API request to its backend
servers and even to external APIs of partner
restaurants. Let’s break down what this
request includes:

• Endpoint: Think	 of	 this	 as	 the	 specific	
URL	 designed	 to	 handle	 your	 request.	
For example, the /placeOrder endpoint
would be responsible for receiving order
details from the app.

• Method: This	specifies	the	action	to	be	
taken. In our example:

 o GET is used when you browse
restaurant menus.

 o POST is used when you place a new
order.

	 o	 PUT/PATCH	is	used	if	you	modify	an	
order	before	final	confirmation.

 o DELETE is used if you decide to
cancel an order.

Fetch restaurant menus and
availability.01

02
03

Place your order and
process payments.

Track the delivery status in
real-time.

 API Security in India’s Digital Landscape | 9

• Parameters: These are additional pieces
of information sent with the request
to specify details. For example, when
searching for a restaurant, you might
pass parameters like location and
cuisineType	to	filter	the	results.

• Request Headers: These provide extra
details about the request, such as
authentication tokens to verify your
identity or metadata specifying data
formats	(e.g.,	application/json).

• Request Body: This contains the actual
order details — items ordered, quantities,
delivery address, payment method, etc.

3. API Server – Processing the Request

Once the request is made, it reaches the API
server — the backend of the food delivery
platform. Here’s what happens:

• Authentication: The server checks
request validity by verifying the
authentication token.

• Input Validation: The	server	confirms	if	
the order details are correctly formatted
and contains all required info or not.

• Data Processing: It processes your order,
checks restaurant availability, updates
inventory, calculates delivery time, and
initiates payment processing.

• External API Calls: The server might
have to interact with external APIs. For
example, payment gateways to process
payments,	 restaurant	 APIs	 to	 confirm	
order availability, etc.

4. API Response – Delivering the Result

Once the request is processed, the server
sends back a response to the app. This
response usually includes:

• Status Code: This indicates the result of
the request:

	 o	 200	OK	–	The	order	was	successfully	
placed.

	 o	 201	 Created	 –	 A	 new	 order	 was	
successfully created.

	 o	 404	 Not	 Found	 –	 The	 restaurant	
or item you’re trying to order is
unavailable.

	 o	 500	Internal	Server	Error	–	Something	
went wrong on the server side.

• Response Headers: These may include
information about caching, content
type, or additional metadata.

• Response Body: This is the actual
content you’re interested in — such
as	 a	 confirmation	 message,	 estimated	
delivery time, or an error message if
something went wrong.

1.3 Relevance of API Security amid
Rapid Technological Advancements

India’s digital sector is evolving at breakneck
speed. The user data processed on
government	 portals,	 financial	 applications,	
and consumer apps is massive scale and
volume, which also means that the impact
of a breach can be enormous. The escalation
of AI/ML, IoT and even preliminary quantum
computing study make it much more
difficult	 to	 secure	 data	 sharing.	 At	 the	
same time, the desire for convenience and
speed encourages organizations to quickly
integrate new APIs without a security review.
As the pressure builds to add new features
and go to market with them, security can
sometimes get pushed aside. More and
more	 citizens	 find	 themselves	 relying	 on	
digital	 channels	 (filing	 taxes,	 receiving	
subsidies, remotely seeing a doctor, etc).
An insecure API can therefore compromise
data, certainly, but can also interfere
with critical government services. Hence,
understanding the wide-ranging aspects of
API security has become mission-critical for
India’s digital evolution.

10 | API Security in India’s Digital Landscape

The Indian API
Ecosystem
2.1 Evolution of the API Economy in India

India’s API economy did not arise overnight. API-based
integration was introduced by larger IT players or Global
companies throughout history to simplify B2B partnerships
or third-party services in select cases. By early 2010s,
eCommerce portals like Flipkart and Snapdeal were
launching developer programs for limited-scope APIs for
product catalogue, orders, reviews, etc.

This	 allowed	 affiliates	 or	 partner	 sellers	 to	 tie	 into	 these	
ecosystems, which kick-started the API phenomenon in
consumer markets. The Indian government launched the
“Open API Policy” around 2015 which marked a shift to
strong, open APIs. The government mandated that all new
or updated e-governance services must expose data and
transactions as an API which created a fertile ground for
innovation.

Over time, more agencies joined the wave—transportation
authorities opened APIs for vehicle registration checks,
educational	 boards	 for	 certificate	 verifications,	 and	 local	
municipalities for property tax queries. Private-sector
interests quickly realized that they too could harness these
data	sets	 to	offer	sophisticated	solutions,	be	 it	 for	credit	
scoring,	digital	KYC,	or	property	management.

A	major	inflection	point	arrived	with	the	emergence	of	UPI,	
which used a standardized set of banking APIs to transform
real-time	payments.	UPI’s	success	demonstrated	to	Indian	
industry that user-friendly apps built on top of well-
managed APIs can scale to billions of transactions. Since

By early 2010s,
eCommerce portals

like Flipkart
and Snapdeal

were launching
developer

programs for
limited-scope

APIs for product
catalogue, orders,

reviews, etc.

02

 API Security in India’s Digital Landscape | 11

2016, nearly all major banks have launched
advanced APIs, bridging the gap with new-
age	 fintech	 startups.	 Meanwhile,	 telecom	
operators, healthcare providers, and others
have followed suit, creating an API tapestry
across industries.

2.2 Role of Digital Initiatives and
Government Platforms

The Indian government has a very proactive
policy which is behind this API boom.
According to Digital India Framework,
solutions must be interoperable, government
data must be open and transparent, and the
private sector is encouraged to build apps
on government data. To illustrate, the idea of
India Stack propagated that Aadhaar-based
eKYC,	eSign	and	DigiLocker	should	be	built	
on open and well-documented APIs so that
entrepreneurs could easily build new services.
The government not only wanted that open
access had to be ensured but also played the
role of a lead integrator. Examples are API
Setu	 (section	 7)	 and	 similar	 platforms.Key	
government platforms that rely heavily on
APIs:

• Aadhaar Authentication: APIs used
for authentication through biometric

(fingerprint,	iris)	or	OTP	are	being	used	
by bank, telecom, and government
benefit	schemes.

• DigiLocker: APIs for Issuing and
verification	of	digital	documents	(ID	card,	
driving	license,	education	certificate	etc)

• GSTN (Goods and Services Tax
Network): APIs for invoicing, returns
filing	 and	 compliance	 that	 businesses	
integrate with, to streamline taxes.

• CoWIN: For vaccination slot availability
and	certificate	downloads,	offering	open	
endpoints so third-party apps could help
users	find	appointments	more	easily.

This Exhibits how a blend of open APIs
policy advocacy along with strong and
resilient governance frameworks can trigger
the upliftment of a whole digital ecosystem,
spurring	a	host	of	domain-specific	solutions.

2.3 Overview of Digital India and API-
Driven Innovation

“Digital India” represents a broad initiative
aimed at delivering public services

12 | API Security in India’s Digital Landscape

electronically at scale. APIs play a crucial role
in connecting various digital components
like identity, payments, records, and
communications to interact seamlessly.
For example, when a farmer in a rural
area requests an agricultural subsidy, the
system may interact with multiple APIs: the
Aadhaar	eKYC	API	for	 identity	verification,	
the DigiLocker API for land ownership proof,
and	 the	 bank’s	 UPI	 API	 to	 transfer	 funds	
— all through a single government portal.
Thanks	to	the	unified,	secure,	and	consistent	
nature of these APIs, the end-user enjoys a
frictionless experience, largely invisible to
them.

In addition, the coexistence of government
innovation and entrepreneurial activity
signifies	 a	 vibrant	 ecosystem.	 Many	
Indian startups primarily function as “API
integrators.” A relevant example is account
aggregator services that consolidate data
from multiple banks under user consent.

They leverage standard protocols to
fetch	 data	 from	 each	 financial	 institution,	
illustrating how well-structured and secure
APIs can break data silos and empower new
applications such as budgeting tools, loan
underwriting, and advanced analytics.

Despite these advances, friction points
remain. Integrating with legacy or regional
government systems that have not been
upgraded can be cumbersome and may
result in inconsistent security. Many regional
bodies with limited resources publish
APIs without thorough testing and robust
security measures.

Nevertheless, the outlook remains positive.
As Digital India continues to gain traction
and expand its scope, the demand for well-
managed, secure API integration across
government and private players will only
continue to grow. Addressing these security
challenges will be crucial to ensuring a
resilient and reliable digital ecosystem.

 API Security in India’s Digital Landscape | 13

Threat
Landscape and
Challenges
3.1 Common API Vulnerabilities and OWASP
API Top 10

APIs present a broad attack surface if not designed
and	secured	properly.	Unprotected	or	poorly	monitored	
endpoints can be exploited by malicious actors, resulting
in severe data breaches and service disruptions. Common
vulnerabilities seen in deployments, many of which are
covered under the OWASP API Top 10, include:

1. Insecure Direct Object References (IDOR)
[OWASP: Broken Object Level Authorization]:

This occurs when APIs rely on user-supplied input to
access resources directly without adequate authorization
checks.

• Example: Changing	a	URL	parameter	like	userID=123	
to	 userID=124	 provides	 unauthorized	 access	 to	
another user’s account.

• Attack Vectors:	 Manipulating	URL	 paths,	modifying	
request parameters, altering JSON objects to access
unauthorized resources.

 In India their
relevance has

gone up massively
because of major

government
digitization

programs like
Digital India,

Aadhaar and UPI.

03

14 | API Security in India’s Digital Landscape

2. Weak Authentication Tokens
[OWASP: Broken User Authentication]:

Many APIs still use outdated mechanisms
like long-lived tokens or predictable API
keys. If these keys are leaked or not rotated
regularly, attackers can exploit them to
impersonate legitimate users or services.

• Example: An attacker intercepts a token
via	 a	 Man-in-the-Middle	 (MitM)	 attack	
and reuses it to gain unauthorized
access.

• Attack Vectors: Token	 leakage	via	URL	
exposure, brute-forcing weak API keys,
reuse of expired tokens.

3. Lack of Rate Limiting [OWASP: Lack of
Resources & Rate Limiting]:

APIs	 handling	 high-traffic	 requests	 are	
vulnerable if they lack proper rate limiting,
allowing	attackers	 to	flood	endpoints	with	
requests.

• Example: A brute-force attack against
a login endpoint due to no rate-limiting
mechanisms.

• Attack Vectors: Brute-force attacks,
credential	 stuffing,	 DDoS	 attacks,	
automated API abuse.

4. Excessive Data Exposure
[OWASP: Excessive Data Exposure]:

APIs sometimes provide more data than
necessary in their responses, trusting the
client-side	 to	 filter	 and	 display	 relevant	
information.

• Example: An API returning full user
details	 (e.g.,	username,	email,	password	
hash) instead of just the username.

• Attack Vectors:	 Sniffing	 unencrypted	
traffic,	 exploiting	 overly	 permissive	
JSON/XML responses, harvesting
sensitive data via web scraping.

5. Unvalidated Inputs [OWASP: Injection]:

APIs that fail to properly validate user inputs
are vulnerable to injection attacks.

• Example: Entering a malicious SQL
statement	 in	 a	 search	 field	 that	 is	
executed by the server.

• Attack Vectors: SQL injection, Command
injection, Path traversal, SSRF, XSS.

 API Security in India’s Digital Landscape | 15

6. Broken Function Level Authorization
[OWASP: Broken Function Level
Authorization]:

Insufficient	 authorization	 checks	 allow	
attackers to access sensitive functions they
shouldn’t have access to.

• Example: A low-privilege user accessing
admin functionalities by manipulating an
API request.

• Attack Vectors: Bypassing role-based
access controls, exploiting unprotected
admin functionalities.

7. Mass Assignment [OWASP: Mass
Assignment]:

Exploiting APIs that automatically bind
client-provided data to internal objects
without	proper	filtering.

• Example: Modifying JSON data to
include unauthorized properties like
isAdmin: true.

• Attack Vectors: Manipulating request
payloads, guessing object properties,
exploiting improperly implemented data
binding.

8. Security Misconfiguration
[OWASP: Security Misconfiguration]:

Poorly	 configured	 security	 settings	 or	
improperly deployed APIs leave them
vulnerable to attacks.

• Example: Leaving default credentials
active on an exposed API.

• Attack Vectors: Exploiting overly
permissive CORS policies, leveraging
unnecessary HTTP methods, exposing
debug endpoints.

9. Improper Assets Management
[OWASP: Improper Assets Management]:

Lack of proper inventory management
of API endpoints, resulting in outdated or
exposed APIs.

• Example: Exploiting deprecated
endpoints that were left active without
proper monitoring.

• Attack Vectors: Leveraging outdated
versions with known vulnerabilities,
accessing undocumented endpoints.

10. Insufficient Logging & Monitoring
[OWASP: Insufficient Logging &
Monitoring]:

Failure to detect and respond to malicious
activities due to inadequate logging and
monitoring mechanisms.

• Example: API breaches going
undetected due to lack of logging or
alerting mechanisms.

• Attack Vectors: Evasion of monitoring
systems, stealth attacks, exploiting lack
of incident response preparedness.

These vulnerabilities and associated
attack vectors highlight the need for a
comprehensive security approach to ensure
APIs are properly secured against evolving
threats.

16 | API Security in India’s Digital Landscape

Reference: https://www.paloaltonetworks.com/cyberpedia/what-is-api-security

3.2 Case Studies of Security Incidents
within Indian Organizations

1. Banking Portal Data Leak: In late 2019,
a well-known Indian bank introduced a
new customer portal with several open
APIs that allowed account detail retrieval.
Due to improper access controls, curious
testers found that changing a parameter
in the request returned other customers’
transaction logs and personal data. It
took weeks to patch, exposing private
details of thousands of account holders.

2. Government Utility Board: A state
utility	 board’s	 official	 mobile	 app	
had an embedded API for fetching
consumer electricity usage data.
Attackers discovered that by altering
the “consumer_number” in the API call,
they could view records of any user in
the state. This vulnerability was publicly
reported on a technology blog, drawing
attention to wide-reaching design
flaws	 in	some	state-level	e-government	
projects.

3. Retail E-commerce Scraping: One of
India’s largest e-commerce companies
inadvertently left an analytics
endpoint unprotected. Third-party
scrapers used that endpoint to gather
competitor intelligence on best-selling
products, discount strategies, and user
demographics. The subsequent data
leak impacted pricing strategies and
competitive positioning, underscoring
the importance of securing even non-
user-facing APIs.

These examples underscore how lapses—
especially around authorization and
data	 handling—can	 lead	 to	 significant	
consequences for privacy, regulatory
compliance, and business competitiveness.

3.3 Regional and Sector-Specific
Challenges

Wth digital journey evolving rapidly and
APIs playing an increasingly vital role
across various sectors. As we approach
2025 and beyond, several region-specific
and sector-specific challenges emerge
that warrant thoughtful attention:

 API Security in India’s Digital Landscape | 17

• Digital Transformation and Legacy
Integration

 India is embracing modern API-driven
solutions, though many govt/public
sector systems still incorporate some
legacy components. Integrating these
older systems with new digital services
can sometimes introduce security
challenges.

 For example: A digital citizen portal that
blends modern interfaces with legacy
backends may inadvertently expose
sensitive data if additional security
measures are not in place.

• Fintech and Digital Payments
Expansion

	 Platforms	such	as	UPI	and	mobile	wallets	
are	 transforming	 financial	 transactions.	
As APIs become critical in these systems,
ensuring robust security is essential to
protect against potential fraud or service
disruptions.

 For example: If a digital payment API
does not enforce strong authentication
or proper rate limiting, it might be
more vulnerable to misuse, potentially
impacting	consumer	confidence.

• Healthcare and Critical Infrastructure

 The healthcare sector is rapidly digitizing
through telemedicine, electronic health
records, and connected medical devices.
While this connectivity improves patient
care, it also underscores the need for
stringent security measures to protect
sensitive health data.

 For example: An API aggregating
patient records from various sources
must be carefully secured to prevent
unauthorized access and ensure
continuous care.

• IoT, Smart Cities, and Supply Chain
Integration

 India’s smart city initiatives and growing
IoT deployments mean that APIs
increasingly support critical services—
from	 traffic	 management	 to	 public	
utilities. Maintaining the security of these
systems is essential to ensure smooth
operations.

 For example: Securing an API that
controls	 traffic	 signals	 is	 crucial	 for	
avoiding potential disruptions that
could	affect	daily	commuting	and	public	
safety.

• Evolving Regulatory and Compliance
Landscape

 Regulatory frameworks are encouraging
enhanced cybersecurity practices.
At	 the	 same	 time,	 differences	 in	
resource availability mean that some
organizations may face challenges in
fully implementing these measures.

 For example: Larger corporations
might have the resources to implement
comprehensive API security controls,
whereas smaller organizations may need
additional support to meet the same
standards.

• Cybersecurity Talent and Resource
Constraints

 As digitalization accelerates, there is an
increasing need for skilled cybersecurity
professionals—especially in API security.
Addressing the current talent gap is
important to help organizations keep
pace with emerging threats.

 For example: Smaller enterprises,
in	 particular,	 may	 find	 it	 challenging	
to recruit and retain specialized
cybersecurity experts, which can delay
critical updates and improvements.

18 | API Security in India’s Digital Landscape

• Sophistication of Emerging Threats

 As technology evolves, threat actors
are employing advanced tools and
automation to identify potential
vulnerabilities. This evolution reinforces
the importance of adopting proactive
and modern security measures.

 For example: Automated tools
that continuously monitor for
misconfigurations	 emphasize	 the	 need	
for equally advanced, real-time defense
strategies.

 API Security in India’s Digital Landscape | 19

Regulatory and
Compliance
Framework
India’s regulatory landscape for data protection and
cybersecurity is evolving to meet the challenges of a
digital-first	economy.	The	Digital	Personal	Data	Protection	
Act	 (DPDP)	 establishes	 comprehensive	 requirements	
for securing personal data, making it essential for any
API handling sensitive information to implement strong
encryption and authentication measures. Similarly, the
Information	 Technology	 (IT)	Act	 sets	 forth	 “reasonable	
security practices” and penalties for unauthorized access,
data theft, or compromising source code. Organizations are
expected to demonstrate due diligence by implementing
appropriate security controls, adhering to guidelines on
data retention, and following incident reporting timelines
as overseen by agencies such as CERT-In.

At	the	national	level,	industry-specific	regulatory	bodies	
across sectors such as BFSI, telecom, and healthcare
enforce robust security standards for APIs that process
user or subscriber data. For instance, the Reserve Bank
of	 India	 (RBI)	 requires	 secure	communication	channels,	
multifactor authentication, and regular security audits
for banking APIs, while regulators like IRDAI impose
similar measures within the insurance sector. Additionally,
guidelines from the Ministry of Electronics and

A compromised API
can lead not only

to legal penalties
and enforcement
actions but also
to reputational

damage and loss of
consumer trust.

04

20 | API Security in India’s Digital Landscape

Information	 Technology	 (MeitY)	 influence	
how government departments manage
authentication and encryption for their
public services.

For private companies—whether in
e-commerce,	 fintech,	 or	 digital	 content—
and public sector agencies, the stakes are
high. A compromised API can lead not only
to legal penalties and enforcement actions
but also to reputational damage and loss
of consumer trust. Many private enterprises
now invest in secure coding practices,
third-party audits, and advanced web

application	firewalls.	Likewise,	public	sector	
departments are increasingly partnering
with	 private	 IT	 security	 firms	 or	 using	
standardized platforms to ensure their
APIs meet regulatory requirements while
safeguarding citizen data.

In summary, a well-rounded approach to API
security in India requires adherence to both
national data protection laws and industry-
specific	guidelines,	ensuring	that	innovation	
in digital services is balanced with robust
user data protection and security.

 API Security in India’s Digital Landscape | 21

Best Practices
in API Security

5.1 Secure API Design and Development
Lifecycle

Many organizations across India have begun embedding
security from the earliest development phases—a concept
sometimes referred to as “Shift Left Security.” Instead of
waiting	until	 final	QA	or	 a	pre-launch	audit	 to	discover	
flaws,	 they	proactively	 incorporate	threat	modeling	and	
security checkpoints in each sprint. For example, a BFSI
project adopting agile methods might allocate a portion
of each sprint to write or review the “Abuse Cases,” i.e.,
scenarios describing how an attacker might manipulate
API calls. This helps developers think of potential threats,
such as an unauthorized user calling certain admin
endpoints or attempting to read data from other user
records. They then mitigate these threats through built-in
defenses, from robust authentication to data validation.

Secure coding guidelines are widely adopted: developers
learn to avoid direct concatenations for database queries,
to sanitize user inputs thoroughly, and to handle error
conditions gracefully so sensitive info is not displayed in
error messages. With Infrastructure as Code practices,
teams	store	their	environment	and	configurations	in	version	

JSON Web Tokens
(JWT) are often
used alongside

OAuth 2.0 to
provide a secure,

stateless way
to transfer
information

between two
parties.

05

22 | API Security in India’s Digital Landscape

control, ensuring consistent deployments
across staging and production. Tools can
automatically	 scan	 these	configurations	 to	

Testing remains a cornerstone:

•	 Unit	 tests	 verifying	 each	 endpoint’s	
basic logic and error handling,

• Integration tests ensuring multiple
endpoints function together securely,

• Security scanners that emulate typical
attacks	 (SQL	 injection,	 parameter	
tampering).

detect	vulnerabilities	(like	“open	firewall	port	
22 to the world,” or “debug mode enabled”).

Beyond that, a robust QA/Pre Prod
environment with sanitized data helps
replicate real-world usage. If the organization
invests	 in	 continuous	 integration	 (CI),	
every code commit triggers these tests.
This approach shortens feedback loops,
preventing vulnerabilities from persisting
undetected.

Governance

SECURE
ARCHITECTURE

DESIGN

PRODUCT TEAM PLANS FOR NEW APIS DEV TEAM MAKES CHANGES TO API CODE

Static Code Analysis
• Coding weaknesses
•	Injection	flaws
• Weak authentication
•	Configuration	issues

Software Composition
Analysis
• 3rd party vulnerabilities
• Licensing issues
• Outdated components

API Security Testing
• OWASP testing
• Business logic
• Authentication testing
• Authorization testing
• Attack simulation

API Gateway
• Authentication
•	Authorization	(limited)
• Rate limiting
•	Traffic	filtering
• Logging

API Threat Management
• Attack detection
• API discovery
• Anomaly Detection
•	Traffic	blocking

DAST

PRE-PRODUCTION PRODUCTION

PLAN DEVELOP TEST RLEASE/DEPLOY OPERATE

 API Security in India’s Digital Landscape | 23

The Key Components

1. Resource Server (API Server):

 o Think of this as the gatekeeper of your
data. It’s where all your protected
information is stored.

 o Example: A social media platform that
holds	your	profile	information.

2. Authorization Server:

 o This is the guy handing out permission
slips	 (access	 tokens)	 once	 you	 say,	
“Yes,	I	trust	this	app.”

 o Example: Google’s OAuth server that
confirms	 you’re	 allowing	 an	 app	 to	
access your photos.

3. Resource Owner (User):

 o That’s you! The one who decides
whether to allow or deny access to
your data.

4. Client (Application):

 o The app asking for permission to
access your data. It’s like a guest
knocking on your door, asking to
come in.

Sample OAuth flow:

5.2 Authentication and Authorization
Protocols (OAuth 2.0, JWT, etc.)

Modern API security heavily relies on
robust authentication and authorization
mechanisms. Two of the most popular
methods used worldwide, including India,
are OAuth 2.0 and JSON Web Tokens
(JWT).	 Understanding	 how	 these	 systems	
work can help organizations build safer and
more resilient APIs.

OAuth 2.0 :

OAuth 2.0 is all about granting limited
access to your data without exposing your
password. It’s like giving someone a visitor’s
pass	 to	 your	 office	 instead	 of	 your	 actual	
keys. Here’s how it usually

works:

It’s what makes it possible for apps to
connect to your Google, Facebook, or
GitHub accounts without you having to
hand over your credentials.

24 | API Security in India’s Digital Landscape

Types of Tokens

1. Access Token:

 o The golden ticket that grants apps
temporary access to your data.

2. Refresh Token:

 o A backstage pass allowing the app to
get a new access token when the old
one expires, without bothering you
again.

Different Ways Apps Get Permission
(Grant Types)

1. Authorization Code Grant (Most
Common):

 o Best for apps that can securely store
tokens	(like	web	apps).

	 o	 You	 log	 in,	 approve	 access,	 and	 the	
app gets a code that it exchanges for
an access token.

2. Implicit Grant (Faster, Less Secure):

	 o	 Used	 mainly	 by	 Single-Page	
Applications	(SPAs).

 o The app gets the access token directly
after approval—faster but riskier.

3. Password Grant (Risky!):

 o The app directly asks for your
username and password.

 o Not recommended because it exposes
your credentials.

4. Client Credentials Grant (Machine-to-
Machine):

	 o	 Used	when	the	app	 itself,	not	a	user,	
needs access.

 o Think of it as a service calling another
service.

Scopes (Access Extent)

• Scopes are like permission slips with
limits.

• For example, an app might ask to read
your	profile	but	not	edit	your	posts.

•	 You	decide	what	access	to	grant.

JWT:

JSON	 Web	 Tokens	 (JWT)	 are	 often	 used	
alongside OAuth 2.0 to provide a secure,
stateless way to transfer information
between two parties. Think of a JWT as a
sealed	envelope	containing	 specific	claims	
about a user or device, which the receiver
can verify without contacting the original
issuer every time. Here’s the breakdown:

• Whenever a client makes a request to a
server, it includes the JWT in the request
header.	 The	 server	 verifies	 the	 token’s	
integrity by checking its signature.

 Why This Matters JWTs are particularly
useful in microservice architectures
where each service needs to verify
requests independently. Once a token is
issued, it can be trusted by all relevant
services as long as the signature is valid.
If the token expires or is tampered with,
it becomes invalid.

 API Security in India’s Digital Landscape | 25

Structure of JWT :

A JW Token is composed of three parts—Header, Payload, Signature;

its structure is header.payload.signature.

Reference: https://www.devskillbuilder.com/understanding-json-web-token-jwt-
b7a9a5d6df37

Header Payload SIgnature

base64enc({
“alg”: “HS256”,
“typ”: “JWT”
})

base64enc({
“iss”: “toptal.com”,
“exp”: 1426420800,
“company”: “Toptal”,
“awesome”: true
})

HMACSHA256(
base64enc(header)
+ “. +,
base64enc(header)
,secretKey)

26 | API Security in India’s Digital Landscape

Header:	 The	 JWT	 header	 identifies	 what	
type the token is and the algorithm used
to	create	the	signature,	e.g.,	HS256	(HMAC	
SHA-256).

Payload: The claims are written in this section
which refers to statements related to user/
system and other data. Typically in JSON
format, the claims contain information like
user roles and permissions, and expiration
times.

Signature: The signature checks whether
the sender is real, and whether the data
was changed. The signature is derived by
encoding the header and payload using a
secret key or a private key, depending on
the algorithm chosen.

JWTs are useful for

• Stateless Authentication: Authentication
that doesn’t require the server to keep
any tokens. A token can be validated to
extract user info from its payload

• Performance: : It decreases the number
of database lookups.

• Flexibility: Flexibility allows them to be
easily passed between services and
used for authentication and information
exchange.

Best Practices for Using OAuth 2.0 and
JWT

1. Always Use HTTPS: Transmitting tokens
over HTTP makes them easy targets for
attackers.

2. Validate Tokens Thoroughly:	 Use	
well-established libraries for signature
validation. Never write your own
cryptographic functions.

3. Implement Fine-Grained Access
Control: Tokens should include scopes
or roles to restrict access based on user
permissions.

4. Secure Refresh Tokens: Store refresh
tokens securely and rotate them
frequently to minimize risk.

5. Short-Lived Tokens: Ensure tokens
expire quickly to reduce the impact of
potential theft.

5.3 API Gateway Strategies,
Encryption, and Real-Time Monitoring

As applications grow, so does the number
of APIs they rely on. Without the right tools
and infrastructure, managing these APIs can
quickly become overwhelming.

This is where an API Gateway becomes
essential.

An API Gateway acts as a central point that
sits	between	clients	(such	as	web	browsers	
and mobile apps) and backend services.
Instead of having clients communicate
directly with multiple microservices, they
send their requests to the API Gateway. The
gateway then processes these requests,
enforces security measures, and routes
them to the appropriate microservices.

Modern applications, especially those built
using a microservices architecture, consist
of multiple backend services, each handling
specific	functionalities.

• Take an e-commerce platform for
example, One service manages user
accounts, Another handles payments,
product inventory and so on

Without an API Gateway, clients must
interact with each service directly, requiring
them to know the location and details of
each backend component. Developers,
in turn, would have to manage security,
authentication, and rate limiting individually
for each service.

 API Security in India’s Digital Landscape | 27

The Benefits of an API Gateway:

Clients send all requests to one endpoint—
the API Gateway

The API Gateway handles security,
authentication,	 and	 traffic	 management	
centrally

Developers can manage backend services
more	 efficiently,	 improving	 scalability	 and	
reliability

API Gateways serve as a central control
point. They can:

•	 Enforce	global	rate	limits	(e.g.,	max	100	
calls/min per client).

•	 Check	 tokens	 (OAuth	 or	 JWT)	 and	
confirm	 that	 the	 request	 matches	 the	
declared scope.

•	 Rewrite	 or	 filter	 data	 to	 remove	 any	
fields	the	client	shouldn’t	see,	preventing	
accidental exposure.

Payment

Order

Client Applications

API Gateway

Cart

28 | API Security in India’s Digital Landscape

KEY Features of API Gateway:

Feature Description Benefits
Authentication
& Authorization

Ensures secure access to
backend services by managing
authentication	(verifying	client	
identity using OAuth, JWT, API
keys)	and	authorization	(granting	
access based on permissions).

Centralized security management

Reduces redundancy across
microservices

Ensures consistent access control

Rate Limiting Controls the number of requests
a client can make within a given
timeframe to prevent overuse or
abuse. Example: A public API may
allow a maximum of 100 requests
per minute per user.

Prevents DDoS attacks

 Ensures fair resource usage

Protects backend services from
overload

Load Balancing Distributes incoming requests
across multiple service instances
using strategies like round-robin,
least connections, or weighted
distribution.

Optimizes performance and
availability

Prevents server overload

Ensures	smooth	traffic	distribution

Caching Temporarily stores frequently
requested	data	(e.g.,	API	
responses, static resources) to
improve response times and
reduce backend load.

Reduces latency for users

Lowers operational costs

Enhances user experience

Request
Transformation

Modifies	incoming	requests	
and outgoing responses for
compatibility between clients
and backend services. Example:
Converts XML responses from
a legacy service to JSON for
modern applications.

Ensures seamless integration

Improves client-backend
communication

Enables support for diverse
systems

Service
Discovery

Dynamically	identifies	available	
backend service instances,
ensuring requests are routed to
active and healthy services.

Enables auto-scaling and dynamic
service allocation

Reduces	manual	configuration	
efforts

Improves system reliability

Circuit Breaking Detects	service	failures	(e.g.,	
high latency, server errors)
and temporarily stops sending
requests to unresponsive services.

 Prevents cascading failures

Enhances system resilience

Improves overall system stability

Logging &
Monitoring

Captures detailed request logs,
collects performance metrics
(e.g.,	request	rates,	error	rates,	
latency), and integrates with
monitoring tools like Prometheus,
Grafana, and AWS CloudWatch.

Helps in troubleshooting and
anomaly detection

Provides real-time system insights

Optimizes performance and
security

 API Security in India’s Digital Landscape | 29

5.4 API Threat Intelligence and
Threat Modeling

Popular open-source gateways in India
include	Kong,	WSO2,	and	Tyk.	Commercial	
solutions	 from	Apigee	or	AWS	(for	cloud-
based deployments) provide additional
analytics, developer portals, and built-in
threat detection. Often these gateways
integrate with WAF modules that detect and
block suspicious patterns akin to injection
attempts or repeated brute force tries.

Encryption plays a dual role:

(1)	 Transport	 encryption	 with	 TLS.	 The	
minimum recommended is TLS 1.2,
though TLS 1.3 adoption is growing.
Bank-level APIs often enforce strong
cipher suites, disabling older insecure
protocols.

(2)	 Field-level	 encryption	 for	 extremely	
sensitive data such as Aadhaar, credit
card numbers, or health records. In such
setups, the data might be encrypted on
the server side, requiring the client to
have the correct key or token to decrypt
the	final	value.

Real-time monitoring:

Involves gathering logs from the gateway,
application servers, and any underneath
database. Security teams can visualize call
volume, trends of errors and spikes of interest
through	tools	such	as	ELK	stack	or	Splunk.	
You	can	set	alerts	for	brute	force	attempts	
or	off-normal	request	patterns.	 In	the	BFSI	
sector, cutting-edge systems may include
AML	 (Anti-Money	 Laundering)	 systems	
that	monitor	dubious	financial	transactions	
through the API. Healthcare systems can,
likewise, look for unusual record access and
make sure that no single user is downloading
information outside their jurisdiction.5.4
Security Testing, Auditing, and Continuous
Improvement

Ensuring the security of the API is not a
one-time job, and it requires regular audits,
testing, and improvements. The following
practices are crucial.

5.4.1 Penetration Testing and Vulnerability
Assessments

• Objective: Identify and exploit potential
vulnerabilities to evaluate the security
posture.

• Techniques:

 o Perform black-box, white-box, and
gray-box	 testing	 to	 assess	 different	
attack surfaces.

	 o	 Utilize	 automated	 tools	 like	OWASP	
ZAP, Burp Suite, and custom scripts
to detect common vulnerabilities
(e.g.,	IDOR,	SQL	Injection,	and	XSS).

• Manual testing helps to detect logic
flaws	and	other	complex	vulnerabilities

• Frequency: Regularly conduct
penetration testing, eespecially after
major updates / architectural changes.

• Outcome: Create detailed reports
highlighting the Vulnerabilties and
remediation	steps	to	fix	them.

5.4.2 Continuous Auditing

• Log and Event Audits: Continuously
audit API logs to detect anomalies and
suspicious activities.

• Code Audits: Perform static and
dynamic	code	analysis	to	identify	flaws	
early in the development lifecycle.

• Compliance Audits: Map audit
procedures to regulatory frameworks
such as DPDP Act, CERT-In guidelines,
and	other	sector-specific	mandates.

30 | API Security in India’s Digital Landscape

• Tools: Enhance insights by combining
automated auditing tools with manual
audits.

• Continuous Improvement: Create
feedback loops on vulnerabilities
discovered.	 Update	 the	 security	
practices regularly.

5.5 Continuous Monitoring Strategies
in the Indian IT Environment

APIs need real-time monitoring for
detecting threats, maintaining performance
and ensuring compliance. “Organizations
need the intelligence to prevent and rapidly
detect cyber threats.”

5.5.1 Real-Time Threat Monitoring

• Objective: Detect, analyze, and respond
to malicious activities instantly.

• Approach:

	 o	 Leverage	 SIEM	 tools	 (like	 Splunk	 or	
QRadar)	 to	 monitor	 API	 traffic	 and	
identify abnormal patterns.

 o Implement AI-driven anomaly
detection to spot unusual API calls or
data access.

	 o	 Use	 API	 Gateway	 Monitoring	 to	
ensure	traffic	legitimacy	and	prevent	
unauthorized access.

• Metrics: Monitor request frequency, IP
addresses, geolocation data, and error
rates to identify potential threats.

5.5.2 Performance and Health Monitoring

• API Latency: Continuously track
response times and latency issues.

• Throughput Analysis: Monitor the
volume of API calls to detect possible
DDoS attacks.

• System Health: Integrate with
infrastructure monitoring tools to
correlate API performance with server
and network health.

• Tools:	 Use	 APM	 tools	 like	 Dynatrace,	
Prometheus, and Grafana to visualize
and analyze performance metrics.

5.5.3 Compliance and Policy Monitoring

• Map monitoring protocols to regulatory
requirements like the DPDP Act.

• Ensure logging and monitoring practices
align with data protection standards.

• Periodically audit monitoring practices
to ensure compliance.

5.6 Incident Response and Risk
Management Tailored for Indian
Enterprises

Indian enterprises face unique challenges
when dealing with API-related incidents.
A	 well-defined	 incident	 response	 and	 risk	
management plan ensures a quick and
coordinated approach to mitigate damage
and resume operations.

5.6.1 Incident Response Planning

• Develop a structured Incident
Response	 (IR)	 Plan	 covering	detection,	
containment, eradication, and recovery.

•	 Define	 roles	 and	 responsibilities	 within	
the IR team, including legal, technical,
and communication stakeholders.

• Test and update the IR plan regularly
through simulated attacks or tabletop
exercises.

5.6.2 Risk Assessment and Management

• Conduct API Risk Assessments
periodically to identify high-risk
interfaces and services.

 API Security in India’s Digital Landscape | 31

•	 Use	 Risk	 Scoring	 Models	 to	 prioritize	
vulnerabilities based on potential
business impact.

• Implement Risk Mitigation Strategies
such as rate limiting, input validation,
and encryption.

• Regularly reassess risk levels and adjust
response strategies accordingly.

5.7 API Threat Intelligence and Threat
Modeling

To proactively defend against emerging
threats, it is essential to incorporate threat
intelligence and modeling into API security
strategies.

5.7.1 Threat Intelligence

• Integrate real-time threat intelligence
feeds to stay updated on emerging API
vulnerabilities.

• Collaborate with CERT-In and other
national agencies to gather region-
specific	threat	data.

•	 Utilize	 threat-sharing	 platforms	 to	 stay	
informed about new attack vectors
targeting APIs.

5.7.2 Threat Modeling

• Conduct threat modeling exercises to
identify potential attack vectors.

•	 Use	frameworks	like	STRIDE	and	PASTA	
to anticipate and mitigate risks.

• Continuously update threat models as
new vulnerabilities and attack methods
emerge.

5.8 Compliance Mapping and
Regulatory Considerations

Given India’s evolving data protection
landscape, ensuring compliance with legal
and regulatory frameworks is crucial.

5.8.1 Regulatory Compliance

• Map API security practices to comply
with:

	 o	 DPDP	 Act	 (Data	 Protection	 and	
Privacy Act)

 o CERT-In Guidelines

	 o	 Industry-Specific	 Regulations	
(Banking,	Healthcare,	Telecom)

• Continuously update policies as
regulations evolve.

5.8.2 Auditing and Reporting

• Maintain comprehensive logs and audit
trails for accountability.

• Perform periodic compliance audits
to ensure adherence to mandated
standards.

• Report security incidents as per CERT-In
directives within the stipulated timeline.

32 | API Security in India’s Digital Landscape

API Setu: An
Indian Case
Study
6.1 Background and Objectives of API Setu as a
National Initiative

API Setu, launched under the National e-Governance
Division	(NeGD),	was	conceived	to	eliminate	departmental	
silos and unify thousands of government services behind
a common API platform. Historically, each ministry
or department built its own custom interface, forcing
complex bilateral integrations. The objective of API Setu
was to:

• Provide a central API catalog where any government
or partner agency can discover existing APIs.

• Enforce standard protocols for authentication, data
formats, and usage policies.

• Facilitate a consent-driven model so that citizens
remain in control of who accesses their data
(particularly	 relevant	 for	 Aadhaar	 or	 sensitive	
government records).

• Foster a culture of reuse and modularity: once an API
is published, other departments or even the private
sector can integrate it quickly without re-inventing
the wheel.

API Setu has
more than 1800

partners with
more than 4200

published APIs. The
platform records

approximately 6
Crore transactions

every month.

06

 API Security in India’s Digital Landscape | 33

Since its inception, API Setu has grown
to	 host	 APIs	 from	 central	 ministries	 (like	
the Ministry of Road Transport, Income
Tax Department, CBSE educational board
etc) plus numerous state-level services. By

bridging these silos, it fuels new services.
For instance, a scholarship portal can
retrieve student grades from the education
board and verify identity through Aadhaar
eKYC,	all	from	a	single	interface.

34 | API Security in India’s Digital Landscape

6.2 Architecture, Security Protocols,
and Integration Approaches

Under	 the	 hood,	 API	 Setu	 functions	 as	
a gateway plus catalog. Government
departments become “providers,”
registering their APIs with the central
Setu platform. Any authorized “consumer”

High level Architecture

(another	 department,	 a	 verified	 private	
app, or a citizen-facing portal) can
request credentials to call those APIs.
Communication typically follows REST
standards with JSON payloads and uses
OAuth 2.0 or API key-based authentication
layered with secure TLS channels.

Open API Platform (API Setu)

DATA PUBLISHERS

DATA CONSUMERS

Central Govt

MoPNG

API API API API API

APIAPIAPIAPI

Driving
License PAN

Caste
Certificates CBSE

State Govt Universities Industry/
Start ups

 API Security in India’s Digital Landscape | 35

Core security revolves around:

• Token-based calls: Each consumer
obtains short-lived tokens that specify
their allowed scope.

• Consent artifacts: If an API deals
with	 personal	 data	 (e.g.,	 retrieving	 an	
individual’s health record), a digital
consent artifact is required, verifying
that the user in question has granted
access.

• Data minimization: Providers only return
really	 required/relevant	 fields	 rather	
than entire records by default, to reduce
unnecessary exposure.Access logging:
records every request, the maker of
the request, and for which user. This
ensures an auditable trail for privacy and
compliance.

Integration typically follows a sandbox
approach, letting prospective consumers
test in a controlled environment before
going	live.	Once	verified,	they	can	operate	in	
production	with	 set	usage	 limits	 (requests	
per minute, total calls per day, etc.) to thwart
DDoS or scraping attempts.

6.3 Lessons Learned and Best
Practices Derived from API Setu

Over the course of its development, API
Setu highlighted:

1. Standardization: By mandating the
use of uniform data formats, naming
conventions, and security headers,
confusion gets cut down drastically.
This	 Uniform/Standardized	 approach	
encourages wider adoption and helps
developers since they know exactly how
to authenticate and parse data from any
of the platform’s APIs.

2. Centralized Governance: By having a
single	 point	 (National	 E-Governance	
Division - NeGD) overseeing compliance

and technical guidelines, each new API
automatically meets baseline security.
This	 is	 different	 from	 letting	 every	
department create rules from scratch.

3. Adaptability: Some departments still
run legacy backends that speak SOAP
instead of REST. API Setu provides
adaptors or proxies to convert older
protocols into modern RESTful
endpoints. This approach fosters
inclusivity, preventing legacy systems
from being left behind.

4. Security Without Slowing Innovation:
Because security is incorporated into
the core framework, departments can
rapidly roll out new services without the
need to redo the entire security logic
from scratch. In short, API Setu provides
a standardized approach for managing
identity, auditing, and token issuance.

6.4 How API Setu Serves as a
Benchmark for Broader API Security
Implementations

API Setu’s success—high transaction
volumes, variety of services integrated,
no major security incidents—serves as a
testament for large scale API management
done right.

API Setu hosts a vast number of APIs that
are published and consumed by various
government and private entities, who in
turn can develop user-centric innovative
products for various sectors such as health,
education, business, etc. As of date, API
Setu has more than 1800 partners with
more than 4200 published APIs. The
platform records approximately 6 Crore
transactions every month.

Enterprises looking to unify multiple business
units under a single API gateway can follow
a similar pattern: build a shared governance
model,	 define	 strict	 security	 policies,	 and	

36 | API Security in India’s Digital Landscape

offer	 a	 straightforward	 developer	 portal	
for discovery. The platform’s approach to
consent-based data access also resonates
with next-generation data privacy laws. As
user-centric data sharing picks up steam in
Indian	BFSI	(with	account	aggregators)	and	

soon	in	healthcare	(via	the	National	Digital	
Health Mission), API Setu’s architectural and
policy achievements serve as an inspiration
for secure, scalable, cross-organization
systems.

 API Security in India’s Digital Landscape | 37

Security Testing,
Auditing, and
Continuous
Improvement

7.1 Methods for Penetration Testing and
Vulnerability Assessments

Security professionals break down API testing into
manual and automated phases:

1. Automated Scanners: Tools like OWASP ZAP or
Burp	 Suite	 can	 parse	OpenAPI/Swagger	 definitions	
to	systematically	test	each	endpoint	for	typical	flaws.	
This is an excellent baseline to weed out obvious
issues like missing authentication on certain routes, or
unhandled error paths.

2. Fuzzing: Specialized fuzzers send random or
malformed payloads to endpoints, seeking to trigger
crashes or unexpected behavior. This helps detect
corner-case vulnerabilities that scanners or human
testers might miss.

3. Manual Pentests: Skilled ethical hackers examine
business logic. They might attempt advanced attacks
like chaining an IDOR to gather user data at scale, or
forging	a	 JWT	 signature	 if	 the	 server	misconfigures	
algorithm checks.

Cloud providers
like AWS or

Azure provide
threat detection

(GuardDuty,
Security Center,
etc.) that watch

for anomalies
in traffic or

metadata.

07

38 | API Security in India’s Digital Landscape

4. Code Review: If the source code is
available,	a	white-box	approach	clarifies	
exactly how data is processed. This can
reveal logic that might be missed by
black-box tests alone.

In India, especially for BFSI or e-government,
formal guidelines often require an
organization to share pentest or vulnerability
assessment results with internal compliance
teams and, if relevant, with the regulator.
Some	 even	 require	 external	 certification	
from CERT-In empanelled auditors.

7.2 Continuous Monitoring Strategies
in the Indian IT Environment

Given that new attacks crop up all the
time, once-a-year audits are no longer
sufficient. Continuous monitoring stands
on:

• Logs and SIEM: Centralizing logs
from each API node in near-real time,
analyzing them with correlation rules to
detect suspicious patterns.

• Behavioral Analytics: If an account
rarely calls the API more than 10 times an
hour, a sudden burst of 1000 calls might
be	flagged	automatically	for	review.

• Integrated Tools: Cloud providers like
AWS or Azure provide threat detection
(GuardDuty,	 Security	 Center,	 etc.)	
that	 watch	 for	 anomalies	 in	 traffic	 or	
metadata.

Monitoring is also about measuring
performance.	 Unexpected	 slowdowns	 or	
error spikes can signal ongoing abuse or
vulnerabilities. For instance, an attacker
might be brute-forcing tokens at such a
high rate that the system returns many “401
Unauthorized”	codes.	Observing	this	pattern	
allows security teams to either block the
offending	IP	or	apply	dynamic	rate	limits.

7.3 Incident Response and Risk
Management Tailored for Indian
Enterprises

An	effective	 incident	response	plan	details	
how	a	team	will	confirm,	contain,	investigate,	
and recover from an API breach. While
standard frameworks like NIST’s CSF or
SANS incident-handling steps are universal,
India’s	environment	has	specifics:

• Mandatory Reporting: CERT-In requires
major breaches be reported within a
stipulated time. BFSI might also have to
notify the RBI or customers if personal
data was compromised.

 API Security in India’s Digital Landscape | 39

• Localization Requirements: If data
must not leave Indian servers, the
post-incident forensic process must
ensure that data remains in local logs or
backups.

• Coordinated Approach: In large
enterprises with multiple APIs, they
keep a central response coordinator
to ensure consistent remediation
across all microservices. Tools like
runbooks assist responders to quickly
disable compromised keys, roll new

authentication secrets, or throttle
malicious	traffic	at	the	gateway.

Risk management typically involves risk
scoring each API based on the sensitivity
of data, transaction value, user volumes, etc.
APIs	with	high	risk	(e.g.,	credit	disbursement,	
health record retrieval) might require MFA,
advanced logging, or special E2E encryption,
etc.,	whereas	Lower-risk	APIs	(like	retrieving	
general info on local schools) might require
simpler controls but still must follow basic
best practices.

40 | API Security in India’s Digital Landscape

Advanced
Topics and
Emerging
Trends

8.1 Leveraging AI/ML for Proactive Threat
Detection in API Ecosystems

•	 Traditional	security	tools	typically	rely	on	pre-defined	
signatures,	 static	 rules,	or	 thresholds	 to	find	 threats.	
Such	approaches	will	increasingly	become	ineffective	
when facing sophisticated attacks that exploit
unknown vulnerabilities or use novel techniques. On
the other hand, AI-driven techniques are adept at
spotting	 fine	 and	 never-before-seen	 deviations	 by	
utilizing large amounts of data and adapting over
time. Here’s how AI/ML is enhancing API security.

• User Behavior Analytics (UBA): A machine-learning
model establishes a baseline for each user or API
client’s call patterns. If usage drastically deviates,
a real-time alert is raised, or suspicious calls can be
automatically blocked pending further checks.

• Anomaly Detection: AI can parse request payloads,
finding	if	certain	fields	deviate	from	learned	norms.	If	
a request to an “account_update” endpoint contains
new suspicious parameters, the system blocks or
quarantines it.

India’s BFSI domain,
some banks have

begun using AI-
based solutions

to detect, for
instance, a

large cluster
of repeated

transactions from
multiple account

tokens that
indicate possible

session hijacks or
bot-driven fraud.

08

 API Security in India’s Digital Landscape | 41

• Intelligent WAF: Next-gen WAF
solutions incorporate ML to identify
injection attempts even if they don’t
match known signatures, often by
analyzing	 structural	 differences	 in	
typical inputs versus malicious ones.

In India’s BFSI domain, some banks have
begun using AI-based solutions to detect,
for instance, a large cluster of repeated
transactions from multiple account tokens
that indicate possible session hijacks or bot-
driven fraud. This approach helps reduce
reliance on purely manual or static checks,
providing advanced detection capabilities
that adapt over time.

8.2 Cloud-Native and Microservices
Architectures in the Indian Market

Many startups and tech-savvy companies
mainly use cloud-native strategies. However,
microservices	 significantly	 increase	 the	
complexity of an API and require that
security is consistent across dozens or even
hundreds of endpoints. Common solutions:

• Service Mesh: Tools like Istio, Linkerd,
or Consul can handle internal service-

to-service encryption, policy, and
traffic	 management.	 They	 ensure	 each	
microservice call is authenticated even
within a private network.

• DevSecOps Integration: Automated
pipelines check every microservice
for known vulnerabilities and
misconfigurations.	If	a	microservice	uses	
an outdated library with known CVEs,
the build might fail until dependencies
are updated.

• Infrastructure as Code:	Using	Terraform,	
Ansible,	 or	 similar,	 teams	 define	
resources, ensuring default security
group rules block all but essential ports
and enabling TLS on all internal routes.

For large Indian BFSI companies transitioning
from monolithic systems, the challenge is
to do so incrementally without introducing
new security holes. Often, they wrap old
SOAP services in RESTful microservices,
which needs thorough testing to ensure
legacy weaknesses aren’t simply disguised
behind a new layer.

42 | API Security in India’s Digital Landscape

8.3 Future Challenges and
Opportunities, Including Quantum
Computing Impacts

Quantum computing poses a theoretical
threat to cryptographic algorithms that
secure API exchanges today. Once quantum
processors	 become	 robust	 enough	 (and	
stable at scale), algorithms like RSA and ECC
could be broken. This is not expected to be
an immediate threat but is a real possibility
within the next decade or two. Prepared
organizations might start testing post-
quantum	cryptographic	 (PQC)	methods	 in	
pilot programs, ensuring that if quantum
breakthroughs come sooner, they can pivot
quickly without rewriting all their APIs from
scratch.

IoT APIs represent another emerging
challenge, especially in areas like smart grids
or connected vehicles. India’s push for smart
cities means thousands of sensor endpoints
using lightweight protocols. If those
“lightweight” APIs skip robust authentication
or encryption for performance reasons,

they open risk for large-scale sabotage or
data leaks. Standardization of secure IoT
protocols—like secure MQTT or CoAP with
strong handshake protocols—will be key to
handle these scenarios.

Meanwhile, AI-powered code generation
can help or harm. Tools that auto-generate
API code from specs can incorporate
best-practice security patterns, speeding
development. Conversely, attackers might
generate exploit code or malicious payloads.
The	net	effect	 is	 that	 security	 teams	need	
to remain vigilant and adapt to fast shifts in
technology.

The Indian market’s dynamic nature—where
a brand-new startup can become a unicorn
in	less	than	five	years—means	organizations	
rapidly scale from thousands of API requests
a day to millions. Ensuring security scales
likewise, with thorough monitoring, resilient
architecture, and compliance checks, is a
challenge that will remain at the forefront of
the next decade.

 API Security in India’s Digital Landscape | 43

Conclusion

India is at a tipping point where its digital infrastructure
and service delivery are irrevocably linked to APIs. As
these	interfaces	proliferate	across	domains—from	finance	
and e-governance to healthcare and IoT—API security
becomes more than just a technical concern; it is central
to safeguarding economic stability, personal privacy, and
overall trust in the nation’s digital ecosystem. Recent
incidents have demonstrated how a single insecure
endpoint can have far-reaching consequences, eroding
user	confidence	and	triggering	regulatory	scrutiny.

Yet,	 the	strides	made	by	 India’s	major	digital	platforms,	
exemplified	in	the	success	of	API	Setu,	show	that	effective	
governance, standard protocols, robust authentication,
continuous auditing, and proactive monitoring can
facilitate secure, large-scale API deployments. By
adopting a “secure-by-design” approach—anchoring
security in every phase of the development lifecycle—
organizations can mitigate typical vulnerabilities such as
IDOR,	broken	authentication,	or	injection	flaws.	Deploying	
best-of-breed solutions like OAuth 2.0, JWT-based
tokens, encryption, and AI-driven anomaly detection
fortifies	APIs	against	even	evolving	threats.

OAuth 2.0, JWT-
based tokens,

encryption, and
AI-driven anomaly

detection fortifies
APIs against even
evolving threats.

09

44 | API Security in India’s Digital Landscape

On the compliance front, India’s evolving data
protection framework, led by the DPDP Act
and	sector-specific	regulations,	underscores	
the urgency of robust API security.
Organizations ignoring these mandates risk
facing	 stiff	penalties,	 reputational	damage,	
and a tarnished brand image. Conversely,
those who embed compliance and strong
security protocols into their daily operations
will stand out as trusted providers in a
competitive marketplace.

Moreover, as India looks to the future—
embracing microservices, AI, IoT, and
eventually addressing quantum-safe
cryptographic transitions—API security will
keep adapting. The need for cross-sector
collaboration, knowledge sharing, and

ongoing skill enhancement is paramount.
Indian enterprises, startups, and government
bodies alike must converge on standardized
guidelines and frameworks, reducing
fragmentation. Doing so not only ensures
the safety of data and systems but also
fosters an environment where innovation
can thrive without incurring unacceptable
risk.

In essence, strong API security is key
to unlocking the next phase of India’s
digital transformation. With consistent
effort—rooted	 in	 technical,	 regulatory,	 and	
organizational best practices—India can
set global benchmarks in delivering secure,
user-centric digital services at scale.

 API Security in India’s Digital Landscape | 45

Abbreviation Full Form

API Application Programming Interface

OAuth 2.0 Open Authorization 2.0

JWT JSON Web Token

SIEM Security Information and Event Management

TLS Transport Layer Security

RBAC Role-Based Access Control

ABAC Attribute-Based Access Control

CORS Cross-Origin Resource Sharing

SAST Static Application Security Testing

DAST Dynamic Application Security Testing

OWASP Open Web Application Security Project

DDoS Distributed Denial of Service

IDOR Insecure Direct Object References

WAF Web Application Firewall

API Setu India’s national API gateway for government services

CERT-In Computer Emergency Response Team - India

NPCI National Payments Corporation of India

MeitY Ministry of Electronics & Information Technology

RBI Reserve Bank of India

NASSCOM National Association of Software and Service Companies

BFSI Banking, Financial Services, and Insurance

PQC Post-Quantum Cryptography

ELK Stack Elasticsearch,	Logstash,	Kibana	Stack

SOAP Simple Object Access Protocol

REST Representational State Transfer

Abbreviations

46 | API Security in India’s Digital Landscape

• API	 –	 A	 set	 of	 rules	 and	 protocols	 that	 allow	 different	 software	 applications	 to	
communicate with each other.

• OAuth 2.0 –	 A	widely	 used	 authorization	 framework	 that	 enables	 secure	 delegated	
access without exposing user credentials.

• JWT	 –	 A	 compact	 and	 self-contained	 token	 format	 used	 for	 securely	 transmitting	
information between parties.

• SIEM		–	A	system	that	collects,	analyzes,	and	manages	security	data	logs	for	real-time	
threat detection.

• TLS	–	A	cryptographic	protocol	that	ensures	secure	communication	over	a	network.

• RBAC (Role-Based Access Control)	–	A	security	model	that	grants	or	restricts	system	
access based on user roles.

• ABAC (Attribute-Based Access Control)	 –	 A	 security	 model	 that	 controls	 access	
permissions based on various user attributes.

• CORS (Cross-Origin Resource Sharing)	–	A	security	mechanism	that	manages	resource	
access	from	different	domains	in	web	applications.

• SAST (Static Application Security Testing) –	A	method	of	analyzing	source	code	for	
vulnerabilities before the software is executed.

• DAST (Dynamic Application Security Testing) –	A	 testing	 technique	 that	 scans	and	
evaluates applications while they are running to detect security vulnerabilities.

• OWASP (Open Web Application Security Project)	 –	 A	 nonprofit	 organization	 that	
provides resources and best practices to improve software security.

• DDoS (Distributed Denial of Service) –	A	type	of	cyberattack	where	multiple	systems	
flood	a	target	server	or	network,	causing	service	disruptions.

• IDOR (Insecure Direct Object References)	–	A	vulnerability	where	attackers	manipulate	
input parameters to access unauthorized data.

• WAF (Web Application Firewall)	–	A	security	tool	that	monitors,	filters,	and	protects	
web	applications	from	malicious	traffic.

• API Setu –	India’s	centralized	API	gateway	that	facilitates	secure	and	seamless	integration	
of government services.

• CERT-In (Computer Emergency Response Team - India)	 –	 The	 national	 agency	
responsible for handling cybersecurity incidents and threats in India.

Glossary of Terms

 API Security in India’s Digital Landscape | 47

• NPCI (National Payments Corporation of India) –	An	organization	that	oversees	and	
regulates	India’s	payment	systems,	including	UPI	and	RuPay.

• MeitY (Ministry of Electronics & Information Technology)	 –	 The	 government	 body	
responsible for India’s digital policies and initiatives.

• RBI (Reserve Bank of India) –	The	central	bank	of	India	that	regulates	financial	institutions	
and ensures monetary stability.

• NASSCOM (National Association of Software and Service Companies)	–	An	industry	
association that represents India’s IT and BPO sectors.

• BFSI (Banking, Financial Services, and Insurance)	–	A	broad	sector	that	encompasses	
banking	institutions,	financial	services,	and	insurance	companies.

• PQC (Post-Quantum Cryptography)	–	A	set	of	cryptographic	techniques	designed	to	
resist potential threats posed by quantum computing.

• ELK Stack (Elasticsearch, Logstash, Kibana)	–	A	suite	of	open-source	tools	used	for	
searching, logging, and visualizing large datasets.

• SOAP (Simple Object Access Protocol)	–	A	protocol	used	for	exchanging	structured	
information in web services using XML-based messages.

• REST (Representational State Transfer)	–	Refers	to	a	set	of	rules	that	allow	communication	
between apps or services over the Internet. The communication takes place using HTTP
(HyperText	Transfer	Protocol)	methods	like	GET,	POST,	PUT,	DELETE	etc.	It	uses	basic	
data layouts like JSON or XML for communicating.

48 | API Security in India’s Digital Landscape

1.	 Ministry	of	Electronics	&	Information	Technology	(MeitY),	Government	of	India	–	Open	
API	Policy	(2015)	&	API	Setu	official	documentation.

2.	 Reserve	Bank	of	India	(RBI)	–	Cybersecurity	Framework	in	Banks	(2016)	and	subsequent	
circulars on digital payments security.

3.	 Indian	Computer	Emergency	Response	Team	(CERT-In)	–	Advisories	on	API	Security	and	
best	practices	for	e-governance	services	(2019–2023).

4.	 Data	 Security	Council	 of	 India	 (DSCI)	 –	 Publications	 on	Open	Government	Data	 and	
secure	integration	approaches	for	BFSI	(2020–2024).

5.	 OWASP	Foundation	–	OWASP	API	Security	Top	10	(2019)	guidelines	on	common	API	
threats and mitigations.

6.	 Press	 Information	 Bureau,	 Government	 of	 India	 –	 Various	 releases	 on	 Digital	 India	
achievements and e-governance updates.

7.	 National	Payments	Corporation	of	 India	(NPCI)	–	Reports	on	UPI	transaction	volumes	
and relevant API usage.

8.	 World	Bank	&	Indian	Start-up	Ecosystem	Reports	–	Overviews	of	India’s	digital	innovation	
environment,	focusing	on	fintech	and	e-commerce.

9.	 Microsoft	Azure,	AWS,	Google	Cloud	official	documentation	–	Best	practices	for	deploying	
secure APIs in cloud-native contexts.

10.	 NASSCOM	–	Surveys	on	API	usage	in	Indian	enterprises,	skill	gaps,	and	data	governance	
challenges	(2022).

References

50 | API Security in India’s Digital Landscape

DATA SECURITY COUNCIL OF INDIA
+91-120-4990253 | ncoe@dsci.in

https://www.n-coe.in/

4 Floor, NASSCOM Campus, Plot No.
7-10, Sector 126, Noida, UP -201303

All Rights Reserved @DSCI 2025

@CoeNational nationalcoe

nationalcoe NationalCoE

Follow us on

The	 National	 Centre	 of	 Excellence	 (NCoE)	 for	 Cybersecurity	 Technology	 Development	
has	been	conceptualized	by	the	Ministry	of	Electronics	&	Information	Technology	(MeitY),	
Government	of	 India,	 in	 collaboration	with	 the	Data	 Security	Council	 of	 India	 (DSCI).	 Its	
primary objective is to catalyze and accelerate cybersecurity technology development and
entrepreneurship within the country. NCoE plays a crucial role in scaling and advancing
the cybersecurity ecosystem, with a focus on critical and emerging areas of security.

Equipped with state-of-the-art facilities, including advanced lab infrastructure and test
beds, NCoE enables research, technology development, and solution validation for adoption
across government and industrial sectors. By adopting a concerted strategy, NCoE aims
to translate innovations and research into market-ready, deployable solutions—contributing
to the evolution of an integrated technology stack comprising cutting-edge, homegrown
security products and solutions.

Data	 Security	 Council	 of	 India	 (DSCI)	 is	 a	 premier	 industry	 body	 on	 data	 protection	 in	
India, setup by nasscom, committed to making the cyberspace safe, secure and trusted
by establishing best practices, standards and initiatives in cybersecurity and privacy.
DSCI brings together governments and their agencies, industry sectors including ITBPM,
BFSI, telecom, industry associations, data protection authorities and think-tanks for policy
advocacy, thought leadership, capacity building and outreach initiatives. For more info,
please visit www.dsci.in

